

Faculty of Engineering and Technology

Master of Software Engineering (SWEN)

Thesis

Android App Testing: A Model for Generating Automated Lifecycle

Tests

 اختبار تطبیقات الأندروید: نموذج للتولید الآلي لاختبارات دورة الحیاة

‘This thesis was submitted in partial fulfillment of the requirements for the

Master’s Degree in software engineering from the Faculty of Graduate

Studies, at Birzeit University, Palestine’

By

Student Name: Malik Motan

Student Number: 1165317

Supervised By: Dr. Samer Zein

An

This th

approv

Dr. Sa
(Chair

Dr. Ah
(Memb

Dr. Ab
(Memb

Date o

Augus

ndroid Ap

hesis was p

ved by all

amer Zein,
rman of th

hmad Tam
ber)

bdel Salam
ber)

of Defense

st 29th, 20

pp Testing

prepared u

members

, Birzeit U
e committ

mrawi, Birz

m Sayyad,

e

020

g: A Mode

under the

of the exa

University
tee)

zeit Unive

Birzeit U

el for Gene

Author

Malik Mo

supervisio

amination

ersity

University

erating Au

r

otan

on of Dr. S

committe

utomated L

Samer Zei

ee.

Lifecycle

in and has

2

Tests

s been

2

3

Abstract

Android is currently the dominating OS in the market. An immense number of Android

apps is deployed to the Google Play store every year. Android apps are no longer merely

focusing on entertainment or socialization. In fact, the literature shows that apps specializing in

critical domains such as health, education and even the military are growing in numbers. This

puts more pressure on app developers to produce quality apps. Research shows that current

Android app testing approaches rely heavily on manual testing. Research in automatic test

generation for Android apps focuses mostly on automated GUI testing, with some approaches

introducing model-based testing for test case inputs. However, no studies focus on generating

lifecycle tests automatically, especially for testing lifecycle method conformance. In this

research, we present a model-based solution approach as a tool to conduct assertion lifecycle

tests automatically for Android activity lifecycle callback methods. Our objective is to build a

framework to generate such a model. Finally, we evaluated our proposed framework in two

ways. First using a group case study. Then we evaluate our work using 10 real world open source

Android applications. The results of our evaluation are promising and show that our proposed

framework is useful for detecting errors.

4

 المستخلص

بلاي جوجل متجر في التطبیقات من هائل عدد یُنشر السوق. في المهیمن التشغیل نظام هو حالیًا أندروید تشغیل نظام

التطبیقات أن الأبحاث تُظهر ، الواقع في الاجتماعي. التواصل أو الترفیه على فقط تركز أندروید تطبیقات تعد لم عام. كل في

على الضغط من مزیدًا هذا یضع مستمر. تزاید في الجیش في وحتى والتعلیم الصحة مثل الهامة المجالات في المتخصصة

كبیر بشكل تعتمد الحالیة أندروید تطبیقات اختبار أسالیب أن الأبحاث تظهر الجودة. عالیة تطبیقات لإنتاج التطبیقات مطوري

الآلي الاختبار على الغالب في أندروید لتطبیقات الأوتوماتیكیة الاختبارات مجال في الأبحاث تتركز الیدوي. الاختبار على

توجد لا ، ذلك ومع الاختبار. حالة لمدخلات نموذج إلى المستند الاختبار تقدم التي الأسالیب بعض مع ، المستخدم لواجهة

البحث، هذا في الأندروید. نظام طرق حیاة دورة مطابقة لاختبار خاصة تلقائیًا, الحیاة دورة اختبارات تولید على تركز دراسات

بناء هو هدفنا الأندروید. حیاة دورة لطرق تلقائیًا للتحقق الحیاة دورة اختبارات لإجراء كأداة النموذج على القائم الحل نهج نقدم

بعدها ثم جماعیة. دراسة باستخدام أولاً بطریقتین. المقترح العمل إطار بتقییم قمنا ، أخیرًا النموذج. هذا مثل لإنشاء عمل إطار

إطار أن وتوضح واعدة, عملنا نتائج أن التقییمات المصدر.تظهر مفتوحة حقیقیة أندروید تطبیقات 10 باستخدام عملنا بتقییم قمنا

 العمل المقترح مفید لاكتشاف الأخطاء.

5

Table of Content

List of Figures 6

List of Tables 7

List of Acronyms 8

Chapter 1 9

Introduction 9
1.1 Introduction and Motivation 9
1.2 Research Objectives and Problem Statement 10
1.3 Structure of This Report 11

Chapter 2 12

Background 12

2.1 Android Activity Lifecycle Model 12

Chapter 3 16

Literature Review 16

3.1 Introduction 16

3.2 Literature Review Methodology 16

3.3 Mobile Application Testing 17
3.3.1 Automated Mobile App Test Input Generation 18

3.4 Generic Model Based Testing 21

3.5 Specialized Model Based Testing 23
3.5.1 Custom-tuned GUI Test Generation 28

3.6 Android Activity Lifecycle Conformance Testing 30

3.6 Summary 31

Chapter 4 32

Methodology 32

4.1 The Model 32

6

4.1.1 The Parser 33
4.1.2 Lifecycle Method Analyzer 34
4.1.3 Resource Usage Assertion Model 36
4.1.4 Resource Usage Report 38

Chapter 5 42

Evaluation 42

5.1 User Evaluation Experiment 42
5.1.1 Programming Task 43

5.2 Open Source Apps 44
5.2.1 Phase 1 45
5.2.2 Phase 2 45
5.2.3 Phase 3 47

Chapter 6 48

Results and Discussion 48

6.1 User Evaluation Experiment 48
6.1.1 User Evaluation Experiment Setup 48
6.1.2 User Evaluation Experiment Results 49

6.2 Open Source Applications Evaluation Results 51

Chapter 7 55

Conclusion 55

7.1 Threats to Validity 56
7.1.1 User Evaluation Experiment 56
7.1.1 Open Source Applications Evaluation 57

7.2 Future Work 58

References 59

Appendix A: Survey Questions 65
Pre-experiment survey 65
Post Experiment Survey 66

7

List of Figures

Figure 1: Android Activity Lifecycle Methods

Figure 2: Model Phases

Figure 3: Abstract Syntax Tree

Figure 4: Activity lifecycle methods graph

Figure 5: Sample tool Analysis Results

Figure 6: sample TODO comment injected above the code acquiring camera using

camera manager

Figure 7: sample TODO comment injected above the code acquiring camera using

camera object instance

Figure 8: Multiple TODOs for multiple resources for the lifecycle method.

Figure 9: Execution Results of the Automated Testing Application for the FooCam

App

Figure 10: Execution Results of the Automated Testing Application for the

FooCam App

8

List of Tables

Table 1: The open source apps used for evaluation

Table 2: Execution time and Lines of code in the main activity for each app

9

List of Acronyms

IEEEXplore: Institute of Electrical and Electronics Engineers Explore

ACM: Association for Computing Machinery

AST: Automation of Software Test

ICITCS: International Conference on IT Convergence and Security

ICSRS: International Conference on System Reliability and Science

ICT4M: International Conference on Information and Communication Technology

for The Muslim World

GUI: Graphical User Interface

API: Application Programming Interface

ESG: Event Sequence Graph

RNN: Recurrent Neural Network

AST: Abstract Syntax Tree

AUT: Application Under Test

10

Chapter 1

Introduction

This chapter introduces research aim, objectives, and motivation.

1.1 Introduction and Motivation

Nowadays, rapidly evolving mobile apps are revolutionizing the way people live and

interact in all aspects of modern life. Mobile apps are ubiquitous and cover a wide spectrum of

domains. Technology startups are reshaping the way people live by presenting creative and

highly intelligent mobile apps. In fact, these apps are no longer merely targeting entertainment

and socialization, they’re now being applied in more critical domains such as health, education

and even military [1], [2] to mention just a few. Furthermore, e-payments and m-governments

mobile apps have been among the most critical types of apps these days.

The need for high quality mobile apps has never been higher. Hence, in order to make

sure a mobile app functions correctly and its data integrity is preserved and not lost in the

operating system, mobile apps need to conform to a standard application lifecycle model. A

mobile app lifecycle model normally means the state of the app’s process and whether it’s

paused, running, stopped, ..etc as well as the state changes from one state to another. In general,

a mobile app conforms to the application lifecycle when it is implemented correctly by

interacting with and transitioning properly between the application lifecycle states [3]. In order

to make sure an app conforms to the application lifecycle, proper testing and validation need to

be conducted.

Testing mobile apps is anything but straightforward. This is due to the diverse nature of

mobile apps and platforms. Such diversity exists due to several factors including the wide range

of current mobile screen sizes starting from small smartphones and all the way to tablets, the

11

variety of input mechanisms like keyboard, gesture, finger and even voice, the storage capacity,

memory, bandwidth and processor. Consequently, it becomes difficult to test the mobile app and

ensure it functions efficiently in all circumstances.

Several techniques are used to test mobile applications. Many researchers have explored

using these techniques on mobile applications [4, 5, 6, 7, 8]. These techniques cover the

categories of performance testing, unit testing, usability testing and functional user interface

testing. However, little studies focus on test case generation for application lifecycle. Hence, the

focus in this thesis research.

We chose Android as our target platform for this research for several reasons. First and

foremost, Android platform has the largest market share of mobile devices of 87% as of 2019

[9]. Also, Android is an open source platform, which allows for more research freedom when

exploring the platform.

1.2 Research Objectives and Problem Statement

Android app testing is an active area of research. Even though several studies have

explored generating test cases for Android applications in various areas, mainly user interface,

research for generating test cases to assess the quality of Android lifecycle code is still nowhere

to be found. Testing the quality of the app lifecycle code is a major concern especially when

producing high-end Android apps.

Objectives

In this research, we aim to:

1. Investigate how to generate a model to represent the lifecycle callback methods from the

perspective of system resources.

12

2. Design a framework to extract such a model using static code analysis techniques.

3. Extend the framework to generate and execute automated tests from extracted model.

1.3 Structure of This Report

This report starts with a quick introduction about the research motivation, aim and

objectives. Then we proceed to chapter 2 to discuss the background by explaining what Android

activity lifecycle model is and how it is used in the Android app development process.

In chapter 3, we introduce the literature review. In this chapter, we present an overview

of the current state-of-the-art of Android application testing and automated test generation

approaches. We mainly focus on model-based test generation research for Android application

and finally highlight the research gap we’re trying to fill. Finally, in chapter 4 we briefly

introduce our research methodology. We go over the initially suggested model of lifecycle test

generation for Android activity lifecycle. After that, we conclude this report with our references.

13

Chapter 2

Background

2.1 Android Activity Lifecycle Model

Android applications go through a series of state changes as the user navigates through

these apps. An application state can be running, paused or even closed. The process of going

through these states of an Android application and the possibility/impossibility of shifting from

one state to another is the application lifecycle. Unlike traditional desktop applications, where the

operating system takes care of all app states and changes among these states, the Android

operating system cannot do the same.

The scarcity of mobile device resources makes it infeasible for the Android OS to store all

states and state changes of all applications and whenever the state changes for these apps. This

puts the burden of handling and managing the application data and state when the application is

paused, swapped by another application on the phone or even shut down by the operating system.

This means that ensuring optimal resource consumption, preventing data loss and reaction to

application lifecycle state changes is the complete responsibility of the Android application itself

[10].

An Android activity is a single action the user is able to perform. Android activity class

creates a window to hold the UI of the app screen, so the user can interact with the activity. When

the user interacts with the activity, the activity instance undergoes state changes. The changes of

activity instance state represent the activity lifecycle. In order to be aware of and react to state

changes of the activity, the activity class has callback methods, also known as activity lifecycle

methods. These lifecycle methods indicate the Android operating system’s process regarding the

activity window, which is the current application screen. These lifecycle methods show whether

14

the Android system is creating, resuming or stopping an activity, or even killing the process of the

activity.

Developers can specify exactly what should happen whenever the user enters or leaves the

activity inside the any activity lifecycle callback method. For example, if the user is streaming a

video within a video streaming application, and the user decided to switch to another application, it

is the video streaming app responsibility to pause/kill the streaming process and cut off the

network connection. Hence, a callback lifecycle method allows the Android app developer to state

what should happen upon app state changes. It is very important to perform the right tasks and

reaction to an application state changes. Using the lifecycle methods right can make the difference

between a highly performant app and a buggy app that keeps crashing.

Android operating system offers six activity lifecycle methods. These methods are

onCreate(), onStart(), onStop(), onResume(), onPause(), and finally onDestroy(). The first method

onCreate is where the main logic of the application startup is coded. This callback method is

triggered upon getting into the Created state of the activity. This logic only runs once per the

activity lifecycle. The second method is the onStart, which shows the activity to the user and

prepares it for interaction, and it is where the developer places the code to maintain the app’s GUI.

This method is triggered upon getting into the Started state.

The onResume method is triggered once the app gets into the Resumed state. This method

is where the user can start interacting with the application. Once the app’s activity is no longer in

the foreground, and whether it’s being destroyed or paused, the application enters the Paused state.

This triggers the onPause lifecycle method. In this method, the developer codes what’s expected to

happen while the application is being shotly interrupted by a phone call for example, a multi-app

15

window is active and the focus is no longer on the current app, or even a dialog has opened on top

of the current activity which makes our app’s activity not fully visible.

When the current app’s activity is no longer visible and completely covered by something

else, or the app itself in the background and another application is now active, the activity enters

the Stopped state. This state triggers the onStop lifecycle method. Inside this method, the developer

can code logic involving operations of saving information to the database for example. The last

lifecycle method is onDestroy. This lifecycle method is triggered right before destroying the

activity. This method can be used either because the activity is finished, or because the Android

system is killing the activity for some reason. In this method, the developer needs to clean up after

the app components and activities and release all system resources [11]. The following diagram

depicts the activity lifecycle methods and transitions between them.

16

Figure 1: Android Activity Lifecycle Methods

Source: [11]

17

Chapter 3

 Literature Review

3.1 Introduction

In our search for automated model-based test case generation for mobile applications, we

came across three main categories of papers. First we start off by looking at the current

state-of-the-art of mobile application testing and the available automated testing tools.

Secondly we look at the generic model-based testing category which discusses papers that

look into generating test cases using predefined generic models. In the same area, we then discuss

the advantages of using model based testing approach in mobile applications, or comparing

model-based testing approach with other automatic test case generation approaches.

The third category of papers delves deeply into the model-based testing approach for

mobile applications and conducts custom tuning of the steps it takes to produce a model for

automatically generating test cases, the actual generation process of the test cases, the execution of

the generated test cases and finally the evaluation of these executed test cases.

In this chapter, we go over these papers, discuss and compare the problems each paper

discusses, the methodology they follow and finally the results these papers come up with.

3.2 Literature Review Methodology

GoogleScholar.com is the engine used to search for papers. We filtered through multiple

academic journals and articles. These include Springer, IEEEXplore, ACM, ResearchGate, AST,

ICITCS, ICSRS, and ICT4M. We also used Google’s documentation for Android developer guide

and some other online resources.

Main keywords and search strings used to elicit the papers from these resources include

mobile testing, Android testing, lifecycle testing, automation tool, application lifecycle, Android

18

activity, automated testing, automation tool, automatic test case generation, model-based testing,

Android GUI model, GUI testing, generation of test cases from model and automatic lifecycle test

generation.

In order to eliminate researcher bias, inclusion criteria for selecting and presenting papers

related to the research topic are as follows. For a paper to be included in the literature review, it

has to be:

1. Has been published within the past five years

2. The paper is at least five-page long

3. Preference for papers that are empirical studies

3.3 Mobile Application Testing

Zein et al. [4] conducted an exploratory multiple case-study to try and understand the

testing methods developers use in real world mobile applications and the obstacles those

developers encounter while testing. This empirical study involved four mobile app development

companies.

The authors concluded that in all studied cases, both developers and testing engineers do

not have the expertise or full knowledge in testing methods or tools to create or test mobile apps

which comply with Android lifecycle properties or models. Besides, the study found that testing

engineers do not possess the knowledge to perform cross-application communication testing,

which is called integration testing. Moreover, the study concludes that no official and systematic

testing approaches exist to help test critical apps. In fact, most industry testing of mobile apps

relies on the manual blackbox testing of GUI. Also, automated testing tools are rarely used to test

19

application lifecycle conformance. In short, mobile app developers main focus is to quickly

produce responsive apps with fancy GUIs.

At the same time, Muccini et al. [1] present a generic overview of mobile application

testing state-of-the-art, and its future research directions. The authors try to understand how mobile

applications are different from traditional ones, and how this affects the types of needed testing

methods. Also, they delve into the challenges and the directions research is heading towards for

mobile app testing. Finally, the authors talk about the role of automation in the mobile app testing

process.

The authors describe that automating mobile app testing is crucial for two main reasons.

First, automation reduces the cost of testing and at the same time guarantees the quality of the apps

under test. Second, ensuring Layer testing. This means testing the interoperability of applications

through the operating system, among apps, and against device hardware too, such as sensors.

Reported bugs indicate that problems arise due to issues between the applications and operating

systems, and not only within the apps.

The same paper explains that achieving cost effective testing for the mobile app can be

achieved by means of cloud-based testing and outsourcing. Besides, research indicates that the

industry may be heading towards the services of testing as a service, which would yield affordable

testing solutions for mobile apps.

3.3.1 Automated Mobile App Test Input Generation

Linares-Vasquez et al. [13] highlight in a survey the state-of-the-art of automation testing

for mobile applications. The Authors cover the services, tools and frameworks that mobile app

developers can use in app testing as well as presenting some of the drawbacks of these available

testing methods.

20

The paper introduces GUI automation APIs and frameworks as one of the existing methods

for testing mobile apps. These frameworks are often used to get an overview of the GUI

components structure. Such tools are usually used by developers and testers to help write

automation scripts that run by record and replay tools. These record and replay tools are used to

record testing behavior, then generate test scripts that can be run later and even modified to cover

different test cases. However, record and replay tools suffer from a compromise of either accuracy

or timing of recorded and replayed events.

Another type of testing methods is automated test input generation. This is one of the most

active research areas of automated mobile app testing. Research in this area presents several

approaches for automated test input generation. These approaches include random testing,

systematic testing, search-based testing, combinatorial testing, and finally model-based testing

which is our focus in this research.

Error and bug reporting tools are another type of the commonly used testing methods

nowadays. This type of tools usually comes in two types, the first is the regular issue tracker for

bugs and the second is the crash and resource consumption monitor tools. This type of tools helps

provide a textual description of the bugs as well as adding snapshots of the errors and resource

consumption.

Mobile testing services are another type of mobile testing approaches. This approach relied

on outsourcing the testing part of a mobile app to a group of testing experts and/or non-experts

outside of the development company. This allows for less testing costs.

Tools for device streaming are also used to facilitate the testing process of mobile apps. This

means that developers can mirror the mobile device to a personal computer screen or even

remotely connect to that mobile device when needed.

21

Despite the fact that all of these automated testing methods and techniques exist, manual

testing is still used more than automated testing for mobile apps. The authors explain that manual

testing is normally preferred due to several factors including lack of the needed functionality in

many of these tools, personal testing preferences by the testers, or organizational limitations in

some of the cases.

Delving deeper into the available automatic test input generation tools, Choudhary et al.

conduct an empirical study [15], by performing a comparison of tools of the existing automatic test

input generation for Android devices. The authors evaluate how effective these tools are in terms

of code coverage, fault detection capability, compatibility with Android platforms and ease of use.

When it comes to code coverage, the authors state that several methods are used which are

systematic, random and model-based test input generation. The research states that it’s not clear

that any of those strategies is better than the others in practice. However, the authors explain that

the most important factor when it comes to automatically generating test inputs is time. This means

that all tools should focus on how much code coverage they can achieve within a limited amount

of time to help measure the effectiveness of these tools. Monkey [16]; which is a random-based

test input generation tool presents the best results in terms of code coverage.

The second metric the paper compared tools against is ease of use. This means that the tool

needs to be effective in terms of working right away and out of the box, with not much

configuration involved. The authors found that Dynodroid [17] and Monkey to be the easiest to

use. While ACTEve [18], A3E [19] and GUIRipper [20] need a lot of configuration to use.

Compatibility with Android platforms is another metric used to compare automation tools. This

means that the test input generation tool needs to run on different Android devices with variable

22

hardware characteristics and Android versions. Monkey, GUIRipper, and ACTEve are compatible

with all Android versions and devices.

The last metric measured in this research is fault detection capability. The authors

measured this metric by counting how many bugs a tool can detect within one hour of running per

app. Monkey tool was able to find the highest number of bugs within the set time limit in this case.

Consequently, the research shows that Monkey tool depicts the best performance when according

to the four benchmarks specified in this research.

3.4 Generic Model Based Testing

In the empirical study of de Cleva Farto and Endo [21], they conduct an experiment to

measure the effectiveness of using model-based testing in generating test cases automatically for

Android applications. They aim at checking if current model based testing can be used to test

functional requirements for mobile applications. Besides, they try to identify the results and issues

of using model based testing in mobile applications. Finally, they try to measure the effectiveness

of the generated test cases on Android applications.

The authors use an event sequence graph (ESG) as the modelling method. They develop

test cases using Robotium framework [22]. The research finds that model based testing is a valid

and recommended approach for automatically generating test cases for Android applications. The

authors found that model based testing is efficient in terms of generating test cases automatically,

detecting faults in the system under test, good test case quality, reduced cost and time of testing

and finally the maturity and evolution of the testing model.

Challenges of the model based testing are also presented. The study shows that modelling

itself proves a difficult task, making the testing concrete for mobile applications in general and

finally requiring experience in certain tools to perform the tests. However, the study concludes that

23

model based testing using an event sequence graph is an effective and systematic method for

testing Android applications.

Saad and Abu Bakar [23] discuss selecting the proper testing tool for the mobile platform

of choice and depending on the research requirements. They introduce a variety of automated

testing tools for the mobile platforms of Android, iOS, Blackberry, Symbian, Windows Phone and

Windows Mobile. The authors focus on the verification of methods that are needed to ensure the

mobile app works as expected, so in other words they assert the functionality of the mobile app

with generic blackbox tools.

Their criteria for choosing the right testing tool include how well the tool handles different

web browsers, emulators, support for different operating systems, types of GUI testing they offer,

and interruption testing abilities, test reporting capabilities, test workflows, and pricing. The

chosen tool of the research is Micro Focus Silk Mobile, a one time payment tool. The authors

mainly chose this tool for the support it offers on all platforms and for providing high quality test

flows.

On the other hand, Frajtak et al. [24] introduce the challenge of using machine-aided

exploratory testing rather than manual exploratory testing to generate test cases. The proposed

approach is suggested where the system under test model is not available. This approach uses a

reverse engineering method to recreate the model of the system under test.

This research conducts a case study with two groups of testers. Where one uses manual

exploratory testing and the other uses machine-aided exploratory testing. The authors propose a

testing framework to help with the exploration of the system under test.

The research finds that the exploratory testing aided by the proposed framework achieves

better results in terms of documenting the testing process. The documentation mostly covers the

24

steps followed to perform a test case as well as generic documentation of the explored areas of the

system under test. The authors measure the efficiency of this approach by comparing it with

manual exploratory testing. The results of this comparison show that the machine-aided

exploratory testing saves 23.54% more time than the manual exploratory testing.

Another commonly studied approach for test case generation that relies on equivalence

classes, where Subramanian et al. [25] discuss partitioning of equivalence classes as an approach

to generate test cases for Android application GUI. This is a manual approach that is based on

specifying the functionality and the GUI specifications.

The proposed approach use class depends on the equivalence class coverage method. This

method produces test cases for the GUI immediately and it fits early stages of the app development

lifecycle. This approach adapts well to changes in the application, since it performs systematic

exploration of the test cases. Besides, the proposed testing approach can help with app

maintenance since unnecessary testing errors can be filtered out.

3.5 Specialized Model Based Testing

Amalfitano et al. [26] introduce the problem of automating the generation of GUI tests.

They present MobiGUITAR as a tool for automated GUI testing of Android apps. MobiGUITAR

is a run-time tool for observing, extracting and abstracting the GUI state of the Android app. This

tool is based on an abstraction Model that has criteria for test coverage to generate unit test cases

automatically. The tool relies on a reverse-engineered model for mobile apps. The authors of this

tool apply it on 4 open-source Android projects in an empirical study to generate and run over

seven thousand test cases and find 10 new bugs.

MobiGUITAR consists of three steps. First, it traverses the mobile app GUI in order to

create a state-machine model (graph) for the GUI to be used for test case generation (also known

25

as GUI ripping). Second, MobiGUITAR generates test cases for the resulting GUI sequences of

events. These test cases are based on the rule that pairs of adjacent events (edges on the graph) are

grouped together to merge the humongous number of sequences of events for the app. Finally, the

execution step outputs the generated test cases as JUnit-formatted outputs. This helps detect app

crash bugs during run-time, which covers the IllegalArgumentException.

The authors conclude that the tool they created helps generate test cases that in turn help

find severe bugs in the applications under test. Moreover, the authors depict that using

model-based testing along with model learning offers improved fault detection in the realm of

testing Android applications.

In another study, Espada et al. [27] executed a model-based testing approach to explain the

different possible user interaction flows in mobile applications. The study is conducted by using a

tool to explore the model generated by a custom finite state machine aimed at detecting all

potential user interactions. The proposed approach uses model-based testing. The authors built a

tool that uses a model to generate test cases. The generated test cases consider both user

interactions with the applications and the applications interactions with each other. Then to analyze

the expected behavior, the authors use a tool called SPIN to analyze a specially designed state

machine to get all available user interactions corresponding to the generated test cases. Finally, the

model generated test cases are run on an Android device to mimic user behavior.

Compared to the approach the authors followed in MOBIGUITAR [26], this research did

not need to clean up the generated test cases and remove the infeasible ones. This is because this

study separated the test case generation from the testing process. Also, the states resulting from the

custom state machine are designed to be limited and compact. Besides, MOBIGUITAR is

26

applicable on one application at a time, while this research allows for testing multiple applications

interacting with Android intents.

 This research concludes by describing how the results generated in this case study make

realistic test cases and not randomly generated test cases that require data cleaning. The authors are

yet to verify the efficiency of this tool with a runtime verification mechanism to test the

effectiveness and performance of this proposed approach.

At the same time, Salihu et al. [28] presents a tool called AMOGA. This approach is

proposed to overcome the issue of generating a model that automatically produces dynamic and

comprehensive GUIs for mobile applications. This approach is a combination between static and

dynamic methods of model generation.

AMOGA has a static analyzer and a dynamic crawler. The static analyzer extracts the event

sequences that the mobile app supports. The dynamic crawler then crawls through these generated

events and builds up the model of the mobile applications. AMOGA is applied to 15 Android

applications in an experiment. The results show that AMOGA efficiently generates a thorough

model which presents high code coverage of the system under test. Besides, mutation testing is

applied to measure the ability of AMOGA to detect faults in the mobile app. The proposed tool

achieved a good mutation score which proves that AMOGA can reveal several bugs in the mobile

app under test.

In another study, Liu et al. [29] introduced the challenge of automatically generating

relevant input text for mobile applications. They use a deep learning mechanism to automatically

generate text input for 50 iOS mobile apps. The deep learning techniques are tuned to work on

trained and untrained mobile apps for the deep learning model.

27

The authors claim to the best of their knowledge and at the time of this research, that

they’re the first to use deep learning to generate text inputs automatically for mobile apps. In short,

their deep learning approach consists of two phases. The first one is the training phase. In this

phase, the automated tool is trained by learning the manual inputs for testing and by associating

these inputs with the relevant context of testing. The second phase is prediction. The automated

tool predicts the input text, depending on the context.

After that, the research delves into evaluating the proposed approach in terms of

effectiveness against other automatic generation of input for mobile. This evaluation involves

comparing a Recurrent Neural Network (RNN) model they build with a random input generation

approach in terms of performance and effectiveness in the scope of multiple cases studies. These

case studies involve 50 iOS devices where the authors test the FireFox and Github iOS apps.

Finally the research compares the deep learning’s RNN model with the Word2Vec

algorithm in terms of performance and effectiveness. Eventually, the authors find that the deep

learning approach for automatic input generation produces relevant text input in terms of the

program context. The evaluation of the 50 iOS apps using the RNN model shows that the proposed

RNN model provides efficient and effective results for generating inputs.

Gudmundsson et al. [30] test the effectiveness of model-based testing to QuizUp Android

application. This application represents the largest quizzing app on the market with millions of

users around the globe. The study depicts that the model-based method which relies on a simple

finite state machine can effectively and efficiently be used to test such huge Android apps. After

applying model-based testing techniques on this app, the authors were able to detect major defects

in the mobile app under test. These defects were then fixed and deployed to the QuizUp Android

application.

28

In another study, Panizo et al. [31] introduced a model-based testing framework to

automatically user interactions with the mobile app. The authors extend the TRIANGLE[6] tool 1

for automatic model-based testing which relies on model checking mechanism.

This study uses the extended tool for testing the ExoPlayer Android application in several

various network scenarios. This mobile application is a video streaming app that uses several

streaming protocols. The major feature in the proposed testbed extension is that it emulates

realistic networking scenarios that cover several configurations for network and radio. Integrating

this feature into model-based testing resulted in better test coverage for user flows, the ability to

further extend the model with additional user flow conditions without changing the model but

rather defining new rules for it and the simplicity of defining testing criteria within the tool with

plain language for average developers.

At the same time, Frajták, Bures and Jelinek [32] present a hybrid testing methodology that

combines the model-based testing approach along with the manual exploratory testing. The authors

present this combination to try and eliminate the issue of verifying and documenting the resulting

test cases when the model for test case generation is incomplete or inconsistent and we need to

re-evaluate its results or measure its testing effectiveness. The model of test case generation is

dynamically created and updated in the exploratory stage. Each step for the test case generation in

the exploratory model is marked via a JavaScript tracking code. This tracking code is injected in

web pages that represent the channels of communication for the test case input data.

The study conducted an experiment where two groups, one used the manual exploratory

testing and the other used model based testing. The research found that manual exploratory testing

had the advantage in some of the sub-tasks of providing documentation of the testing flow,

re-evaluating the testing scenarios, and documenting the explored and non explored areas of the

1 https://www.triangle-project.eu

https://www.triangle-project.eu/

29

system under test. This is an advantage of manual exploratory testing that model-based testing

does not have that this research found.

 In the study conducted by Zhang, Wu, and Rountev [33], the authors look into testing

Android applications to explore and find the leaks and defects in resource usage. They used a static

analysis model to define the regular GUI flows that have a normal effect on Android app

resources. After that they introduced a test input generation algorithm to generate these normal

flows and then categorize these flows into two categories.

The categorization of the generated outputs of these algorithms followed the patterns of

resource leak of the Android applications under test. After that, the authors compared these

algorithms of automatic test input generation with non automated algorithms that the authors have

presented in previous work.

The result of this study indicates that it is actually possible to automatically generate

effective and generic test cases for detecting leaks in Android app resources using the

methodology they propose.

3.5.1 Custom-tuned GUI Test Generation

Baek and Bae [34] introduce automated GUI testing using a model for test case generation

as well as debugging. The authors follow a systematic approach in an empirical study to

understand the effect of multilevel criteria of GUI comparisons on the effectiveness of testing.

The authors introduced the multilevel GUI comparison criteria (GUICC) framework as a

GUI model generation methodology which focused on the way GUI model is generated for

Android applications. They conducted an empirical study to test the effectiveness of GUICC for

testing the effectiveness of Android GUI testing models. They tested the framework in terms of

30

research questions about the effectiveness of the generation GUI graph, the code coverage that

graph offered and finally the error detection capability of the GUICC framework.

As a result, the authors found that multilevel GUI testing achieved more effective activity based

(single level) GUI modelling and testing. Besides, they found that state explosion issues can be

significantly minimized with multilevel GUI comparison criteria, which is an issue in single level

GUI testing.

The authors discuss the issue of implementing automated GUI testing approaches and

comparing the outcome of each of these approaches. The authors present a generic testing

algorithm in the context of a conceptual framework. The aim of their framework is to use it for

building up methods to automatically test GUIs and compare the outcomes. The framework itself

is based on the generic and configurable algorithm that can be tuned to produce several various

Random testing and Active Learning testing methods via modifying the six input parameters of the

algorithm.

In a different study, Amalfitano et al. [35] applied a specially designed conceptual

framework on an Android application. They defined and applied nine testing approaches by

configuring the AndroidRipper [3] in nine different ways, which resulted in nine different testing

approaches. After that, they compared between the results for each of these approaches. The goal

of this comparison was to try and understand how the change of the algorithm’s six inputs affected

the adequacy of testing, the cost and the resulting GUI tree complexity for each of these

approaches. Six of these nine testing approaches use Active Learning strategies, where model

learning and GUI testing are used together to learn the model of the GUI to generate events/test

cases based on the inferred model.

31

The research concluded that descriptive testing strategy, where the analyzing the GUI is

described in relevant component subsets, deeply affects the performance of the testing approach

as well as the testing model complexity. Whereas the scheduling strategy, where the schedule for

firing next events is provided, didn’t. In fact, the models built using both the active learning and

non active learning methods are biased when built using the scheduling testing strategy.

3.6 Android Activity Lifecycle Conformance Testing

Zein et al. [39] introduce an automated testing approach using static analysis to help junior

developers keep track of used system resources during the Android applications’ lifecycle. The

difference between my research and Dr. Samer’s is the following:

● Dr. Samer’s work is merely based on static code analysis, while mine is model

based. I build a model and the output of every phase is previously clarified in the

methodology chapter.

● My model-based tool checks activity files, fragments and AppCompatActivity files,

while Dr. Samer’s only checks activity files.

● My model-based solution approach (tool) generates text files for each activity,

fragment and AppCompatActivity file, and these text files represent graphs of the

lifecycle methods mode for that activity, fragment or AppCompatActivity. These

graph representations contain the lifecycle method transitions from one lifecycle

method to the next and the resources acquired/released inside each lifecycle

method. Dr. Samer’s static code analysis doesn’t have such phases or lifecycle

method representations for checking resource acquisition/failure in the next phases.

● I conduct a user acceptance experiment to verify the benefits and usability of my

model-based solution approach, while Dr. Samer doesn’t

32

● My model-based solution approach injects the TODO comment recommendations

inside the Android apps’ source code, to help the developer locate the resources that

fail and where to release these resources, Dr. Samer’s tool doesn’t offer such

functionality.

3.6 Summary

In conclusion, we discussed work related to automatic testing of Android applications. As

shown in the previous sections, research in this field usually focuses on depicting state-of-the-art

mobile application testing and the available automated testing tools in the market.

In other studies, research focuses on generic model-based testing which discusses papers

that look into generating test cases using predefined generic models. In the same way, some papers

tend to discuss the advantages of using model based testing approach in mobile app testing, or

comparing model-based testing approach with other automatic test case generation approaches.

Another category of papers delves deeply into the model-based testing approach for mobile

applications and conducts custom tuning of the steps it takes to produce a model for automatically

generating test cases, the actual generation process of the test cases, the execution of the generated

test cases and finally the evaluation of these executed test cases.

We elaborated on these approaches and fields in the above sections in terms of the

problems they tackle, the methodologies used to tackle these problems and finally the results each

paper discovered. However, no research focuses on generating lifecycle tests automatically for

Android activity lifecycle callback methods. This is where we shed the light and conduct our

research to fill this research gap.

33

Chapter 4

Methodology

The methodology we propose is building a model of the Android lifecycle callback

methods, then use this model to generate test cases and finally execute these test cases and analyze

the results. The lifecycle model will be the base of our test case generation process. The following

figure depicts our model and its four phases.

4.1 The Model

The following diagram summarizes the main phases of the proposed model.

Figure 2: Model Phases

This model-based solution approach (tool) is implemented using the language Java, version

8. The implemented tool which is based on this model follows the phases and input and output

34

flow described in the next sections for each phase of the model. The model-based proof-of-concept

tool we present checks Android app activity files, fragments and AppCompatActivity which is

used for backward compatibility features.

4.1.1 The Parser

This is where the Android source code is first consumed. This phase takes the Android app

source code and parses each of the activity files in this app using static code analysis. The parser

parses one activity at a time, until all activities are parsed. The parser will only parse the Android

lifecycle Lifecycle methods within each activity. The output of this phase is an Abstract Syntax

Tree (AST) model.

The parser used in this phase is the Java Parser [37]. This publicly available library enables

us to interact with the source code to be parsed in Java object representation format. This object

representation format is called Abstract Syntax Tree (AST). This Abstract Syntax Tree data

structure helps navigate and traverse the parsed code conveniently.

The example below demonstrates what the Abstract Syntax Tree representation is for Java code

that prints the time [38].

package com.github.javaparser;

package java.time.LocalDateTime;

public classTimePrinter {

public static void main(String args[]) {

System.out.print(LocalDateTime.now());

35

}

}

The time printer code above is parsed and represented in the high level Abstract Syntax

Tree shown in the following figure

Figure 3: Abstract Syntax Tree [38]

The Abstract Syntax Tree Model in this phase resulting from parsing the Android source

code is then consumed by the Lifecycle Method Analyzer in the next phase.

4.1.2 Lifecycle Method Analyzer

This phase of the model consumes the Abstract Syntax Tree resulting from the previous

phase and uses the AST to build a graph for each activity of the Android app. Each graph

represents the activity lifecycle methods and the transitions between them. Each node in the graph

contains a lifecycle method in that activity and the resources it uses (catches/releases). Each edge

36

in the graph represents transitions between the lifecycle methods. For example, Camera resource:

where it was opened (onResume), and where it was let go (onPause).

The figure below shows a sample graph with two lifecycle methods and the resources

acquired and released in each of them.

Figure 4: Activity lifecycle methods graph

This phase of the model produces a directed graph for each activity file in the Android app

and the lifecycle methods inside that activity file, similar to the graph in figure 4. In order to help

visualize and see the results of this phase, the graph for each activity is printed on a separate text

file and inside a folder named ‘log’, and the output on that text file is printed in the following

format:

 onResume() ---> onPause() ---> onResume()

 - Camera acquired - Camera released - Camera acquired

 - Location acquired - Location acquired

37

This activity lifecycle graph is then consumed by the assertion algorithm in the next phase

of this model to determine the success or failure for each of the acquired resources.

4.1.3 Resource Usage Assertion Model

In this phase, we build lifecycle test assertions to make sure each resource, e.g. the camera

was acquired and released in the relevant lifecycle methods. These assertions tests take into

consideration three resources and a set of predefined model rules for each resource to use for

assertion. In the model-based tool we implement assertions for three system resources; the camera,

the location and finally the external drive. We chose these 3 resources because they’re the most

commonly used system resources by Android apps.

The first resource is the camera. This resource is checked by searching all lifecycle

methods for the camera object instance, which acquires the camera. This object is usually

initialized inside the onResume lifecycle method. However, the model checks for instances of the

camera object in all lifecycle methods in case the camera was acquired in any of them. The camera

in Android (version 11) can be acquired in one of two ways:

1. Directly using a camera object instance. This camera object instance can be directly

initialized in the lifecycle method itself, or inside another regular method which then is

invoked inside the lifecycle method, called cameraInstance for example. Afterwards, this

camera object instance is used to acquire the camera resource using

cameraInstance.open(). Normally the camera is released inside the onResume method, but

we check the other lifecycle methods as well. We check if the camera resource was

released by looking for the cameraInstance.release().

38

2. Using the Android camera manager which uses the camera via system services. We check

for an instance of the camera manager object, called cameraManager for example. In order

to check if the camera manager instance is released or not, we look for the

cameraManager.close(), which should be in the onPause lifecycle method.

The second resource we check is the location. We check for location acquisition in

lifecycle methods (usually in the onResume method) and we look for an instance of the

FusedLocationProviderClient and if it invokes the getFusedLocationProviderClient method. In

order to check if this resource is released, we look for the removeLocationUpdates inside the

onPause lifecycle method.

The third resource we check in this model is the external storage (drive). We check for

reading from or writing to external storage using either the Android ParcelFileDescriptor or

InputStream/OutputStream, depending on whether the media content is best represented as a file

descriptor or a file stream.

The model-based solution approach (tool) we build has a property file used to define

resources and the rules for each one of these resources. The property file which is managed by the

developer consists of the following attributes and methods as inputs to the tool:

● Name for the resource we’re defining. For example, we alias the camera resource caught

using the camera object instance ‘Camera’ and the camera resource caught using the

Android camera manager (via system service) ‘Camera2’, in order to clearly show the

resource that failed and how it was acquired.

● The way the resource is caught. For example, we define cameraInstanceVariable.open() as

the way ‘Camera’ resource is caught using the camera object instance. While we defined

39

getSystemService(Context.CAMERA_SERVICE) as the way the camera is caught using the

camera manager.

● Lifecycle methods where the resource can be acquired. For example, we define onResume

as the method where the ‘Camera’ and ‘Camera2’ can be acquired.

● Lifecycle methods where the resource can be released. For example, we define onPause as

the method for where the camera resource can be released, in both camera definition

methods.

4.1.4 Resource Usage Report

The final phase of this model is to present the assertion results for the checked resources.

The model checks for resource acquisition/release using the assertion rules and for each of the 3

resources described in the previous section. If a resource is caught, but not released, then the test

fails. The model-based tool we present provides details about each resource and in what activity it

was caught (acquired), and whether this resource was released (pass) or not (fail).

Figure 5 below shows a screenshot of the results window of the tool after analyzing a

sample Android app and showing the parsing and checking results for 7 activities and their

associated resources. We notice the results colored red, which are 1, 4 and 5 are failing resources

because the related resources were acquired but not released. The tool shows the failing resources

and the recommendation to release the failing and in the appropriate lifecycle methods.

40

Figure 5: Sample tool Analysis Results

Besides, this model-based tool we present inserts a TODO comment in the Android app’s

source code and in the activity file to help the developer locate the resource that failed the test. The

comments are inserted for resources that fail, and two TODOs are inserted for each failed resource:

1. One comment is inserted above the line of the instance of the resource that acquired the

system resource. Screenshots below show the TODOs for the camera resource acquired

once using camera object instance, and once acquired using camera manager, and neither

were released.

41

Figure 6: sample TODO comment injected above the code acquiring camera using camera

manager

Figure 7: sample TODO comment injected above the code acquiring camera using camera object

instance

2. A second comment is inserted on top of the activity lifecycle method where the resource

was acquired. Figure below shows the TODOs injected above the lifecycle method where

the camera resource was acquired in 2 different ways (hypothetical scenario) to show how

acquiring multiple resources in the same lifecycle method and not releasing them would be

treated by the tool. These TODOs would summarize the failures for the developer and

save some time to go look inside each of the invoked resource acquisition methods inside

the lifecycle method to look for which resources are failing separately as per previous step

when there are multiple failures.

42

Figure 8: Multiple TODOs for multiple resources for the lifecycle method.

These TODO comments help the developer locate the resources that are acquired and not

released, so the developer can release these resources and avoid bugs.

43

Chapter 5

Evaluation

We evaluate the results of our research using two approaches. We first conduct a user

evaluation test, an approach used before by Barnett et al. [36]. Secondly, we seed bugs into 10 real

open source Android applications, then run our tool on these applications. This method was

applied by Zein et al. [39].

We first conduct the user evaluation test to help measure user acceptance of the developed

tool and if it could actually help make the development process faster and less buggy. The GitHub

repository of the project contains the entire automated testing application as well as an executable 2

JAR file for the tool.

5.1 User Evaluation Experiment

We asked 6 Android developers to fill out a demographic survey prior to starting the

experiment. This helped identify the experience level of the developers undergoing the experiment.

After that, the participants watched a short learning video on how to use the automated testing

application (our model-based tool) on a provided sample application. The learning video is so that

we reduce the bias and at the same time run the experiment for multiple users, instead of going

after them one by one.

The experiment setup went as follows:

1. Fill out a pre-experiment demographic survey (can be found in the appendix)

2. Watch a learning video for how to use the automated testing application.

3. Complete the programming task described below.

2 https://github.com/MalikMotan/AutomatedAndroidAppTester

https://github.com/MalikMotan/AutomatedAndroidAppTester

44

4. Finally fill out this evaluation survey.

5.1.1 Programming Task

Now once you’ve filled out the initial survey and watched the video on how to use the automated

testing application, your task is to run the automated testing application on the sample Android

application provided in this link and using the following simple steps:

1. Download the automated Testing application (Jar file) . 3

2. Download (or fork) the sample Android application . 4

3. Run the automated testing application and select the sample Android application as the

input.

4. Check the successful/failed resources on the testing application’s GUI.

5. Go to the Android app’s source code and release the non-released (failed) resources in each

of the corresponding activity files mentioned in the applications GUI.

6. Run the automated testing application again on the Android app.

7. Verify all resources now pass the tests.

Once the developer has taken the development task, he/she is asked to fill out the post

experiment survey to measure the user acceptance. In the next chapter, we introduce the results

and discussion. The full experiment surveys, survey results, sample app, learning video and

executable JAR file are all in one public GitHub repository 5

3 https://github.com/MalikMotan/ExperimentAndEvaluation/blob/master/Android-Parser.jar
4 https://github.com/MalikMotan/ExperimentAndEvaluation/tree/master/SampleAndroidApp
5 https://github.com/MalikMotan/ExperimentAndEvaluation

https://github.com/MalikMotan/ExperimentAndEvaluation/blob/master/Android-Parser.jar
https://github.com/MalikMotan/ExperimentAndEvaluation/tree/master/SampleAndroidApp
https://github.com/MalikMotan/ExperimentAndEvaluation

45

5.2 Open Source Apps

We evaluate our automated testing application against 10 open source real world Android

applications. These 10 applications are from different domains and have different sizes and

complexities. We seed bugs into these applications and check the ability of our tool to detect these

bugs. Table 1 below shows a summary of these applications.

App Name App Type Description Lines of code in
main activity

FooCam (200ms) Multimedia Take several
consecutive shots with
different exposure
settings

297

AntennaPod (1.5s) Multimedia Flexible and easy to
use podcast manager

514

CoCoin (1.2s) Financial Multiview accounting
and financial
management

770

LeafPic (1.6) Multimedia Material-designed
fluid image gallery

633

Keepass2Android
(1.1s)

Utility Password manager to
store and retrieve
passwords

287

Camera2Basic (0.4) Multimedia Camera tutorial that is
used to learn how to
use camera

1036

Location Samples
(0.3)

Navigation Location samples
library for best
practices of utilizing
location

241

OpenCamera (1.5) Multimedia Multifunctional and
rich camera app

3038

Telegram (15s) Communication (15s) Messaging app with 4193

46

Table 1: The open source apps used for evaluation

The evaluation process for the 10 applications aimed at evaluating our tool’s (automated

testing application) ability to detect the correct and incorrect release of the acquired Android

system resources. The evaluation process consists of three phases.

5.2.1 Phase 1

we first manually check the source code of all applications under test (AUT). This is to

make sure these applications don’t have lifecycle method errors. We check the imports of

utilization of system resources to check which resources are being used. After that, we check the

acquisition and release of each system resource to check if that resource is invoked in the right

lifecycle methods.

5.2.2 Phase 2

This phase aimed at evaluating the wrong releases of system resources. In this phase we

modified the source code of each of the applications under test in order to inject bugs into the main

activity of each of them. Then we checked if our automated testing application can detect these

injected bugs and display related errors on the application GUI. Our automated testing application

tests for three resources, which are the camera, the GPS (Location) and the external storage

high speed and
security for
exchanged messages

WordPress (14s) Productivity Content management
system for blogs and
personal websites

1546

47

(drive). Our testing process includes scenarios for testing, which test resources incrementally.

These scenarios are:

a. First scenario: we inject the error of incorrect release of the camera resource,

then run our tool to detect this error.

b. Second scenario: we inject a second error to the camera one, by having

incorrect release of the GPS (location) resource, then run our tool to detect

these two errors (camera and GPS resources).

c. Third scenario: we inject a third error for the external storage resource, then

run our tool to try and detect all three resources together (camera, GPS and

external drive).

In this phase, we rely on manually modifying the Android apps’ source code in order to

inject bugs into them. We make sure each of the resources is acquired but not released. The

incorrect release of system resources is done in either one of two ways, which are the common

mistakes of junior developers when building Android apps. These two ways are:

1. Deleting the release method for each one of the three Android resources. For the camera

resource, we delete the cameraInstance.release() method invocation for the camera

invoked using camera instance method, or delete the cameraManager.close() method

invocation of the camera using camera manager method. For the location (GPS), we delete

the removeLocationUpdates method. For the external drive resource, we delete the

ParcelFileDescriptor or InputStream/OutputStream, depending on whether the media

content is best represented as a file descriptor or a file stream.

2. Inserting the release method for each resource into the wrong lifecycle method. For

example, releasing one or more of the resources inside the onStop lifecycle method.

48

This phase also includes inserting the TODO recommendation comments where each

failed resource is acquired. This TODO intends to help identify in the source code of the Android

application where each resource was captured but not released. Then insert a comment above the

line of code that acquires any of the three resources (camera, GPS and external drive), to

recommend releasing that resource using the appropriate released method, and in the appropriate

lifecycle method as mentioned in figures 6, 7 and 8 in the previous chapter.

5.2.3 Phase 3

The purpose of this phase was to evaluate if the automated testing application can correctly

identify the appropriate release of system resources and in the right lifecycle method. In this phase,

we aimed to check if our automated testing application can detect for each of the three resources if

the resource was acquired and released in the right lifecycle methods.

In order to evaluate the execution performance of our automated testing application [40],

we measured the time (in milliseconds) it took to analyze, parse and check the resources for each

of our 10 applications under test.

49

Chapter 6

Results and Discussion

6.1 User Evaluation Experiment

6.1.1 User Evaluation Experiment Setup

There were 6 participants in the automated testing application’s evaluation experiment who

successfully completed the experiment. All of the participants are software developers with

Android development experience levels ranging from one to five years. Two of the participants

were female and four were male. The vast majority of those developers have built one to five

Android applications in their lifetime. Only one of those developers has built 10 or more Android

applications.

Five of those developers have bachelor’s degrees, and only one of them has a master’s

degree. Almost none of those participants has ever used an automated testing application for their

Android applications. It took the participants about 15 minutes each to finish testing the

application and fill out the surveys. Figure below shows the responses to each of the demographic

questions.

50

Figure 6: Demographic survey results

6.1.2 User Evaluation Experiment Results

When it comes to the post experiment survey, which intends to measure user acceptance,

the vast majority of participant responses were positive. Around 90% of all participants either

agree or strongly agree to 14 out of 15 to the likert scale type of questions. These strong results

confirm that the proposed model and model-based tool is suitable for usage by professional

Android application developers.

51

About 85% of participants agree or strongly agree that the automated testing application is

fairly easy to use and easy to learn how to use it. Besides, that same percentage of participants

strongly agree that it was easy to find the TODO comments inside the Android app’s source code

where the resources were acquired but not released. This in turn has helped those developers

perform the programming task easily and fix the failing resources and run the automated testing

application again to verify these resources were released properly and with no failures. Keeping in

mind that those participants also found it easy to remember how to re-run the automated testing

application when running it the second time and without making any errors.

Questions 3, 5, 6, 7, 11, 14 and 15 got 100% of participants to strongly agree on the

following respectively:

● It was easy to find the log text files that represent the lifecycle methods model for

each activity,

● It was easy to find the resources that were caught (acquired) but not released in any

activity lifecycle method,

● The GUI of the automated testing application provided useful information about the

resource the Android app was using,

● The GUI of the automated testing application helped identify the resources which

were acquired but not released,

● The participants are satisfied in general using the automated testing application for

testing their Android apps for resource failure and would recommend this

automated testing application for fellow Android developers.

52

Furthermore, 85% of participants agree or strongly agree that the automated testing

application helps make the development and testing process of Android apps faster and more

productive. When the participants were asked in the open-ended question about what they liked the

most about the automated testing application, two major points were raised:

● The success and failure of acquired resources.

● The TODO comments in the Android app’s source code to help release the failing

resources and in the relevant lifecycle method.

Finally, participants included some points regarding what features they would like to be included

in this automated testing application for Android apps, these consist of:

● Checking all Android system resources in addition to the 3 resources the automated testing

application currently checks.

● Releasing the failed resources automatically.

6.2 Open Source Applications Evaluation Results

The results of phase 2 evaluation for the 10 open source apps, where we check if our tool

can detect incorrect release of system resources, were promising. The automated testing

application successfully detected all incorrect releasings of the Android system resources and for

all 3 scenarios. Figure 9 shows a screenshot of the execution results for the automated testing

application for the AntennaPod Android app. The results of execution show that the external drive

resource in one of the major activities failed the test, since it did not release the external drive in

the right lifecycle method (onPause method).

53

Figure 9: Execution Results of the Automated Testing Application for the AntennaPod App

When it comes to phase 3 testing, where we tested if our tool can identify correct release of

resources, the results were promising too. The automated testing application successfully detected

correct releasings of the Android system resources and for all 3 scenarios. Figure 10 shows a

screenshot of the execution results for the automated testing application for the FooCam Android

app. The results of execution show that the camera and external drive resources in the main

activity have passed the test. This is because both the camera and the external drive were acquired

in the onResume and released in the onPause lifecycle methods correctly.

54

Figure 10: Execution Results of the Automated Testing Application for the FooCam App

As for performance evaluation of our automated testing application, we measured the

execution time in milliseconds for each of the applications. Table 2 below shows the execution

time for each of the 10 apps we test.

55

Table 2: Execution time and Lines of code in the main activity for each app

Table 2 above depicts the execution time and lines of code for each of the 10 open source

Android applications. The average execution time for the first 8 applications is 780 milliseconds.

This shows that our tool can analyze, parse and check for resource acquisition and releasing for

each of the 3 resources and for relatively large mobile apps in a short time (780 milliseconds).

The last two applications which are Telegram and WordPress are huge enterprise

applications having hundreds of activities, and our tool takes about 14.5s on average to analyze

such applications.

App Name Execution Time Lines of code in main activity

FooCam 0.2s 297

AntennaPod 1.5s 514

CoCoin 1.2s 770

LeafPic 1.6 633

Keepass2Android 1.1s 287

Camera2Basic 0.4s 1036

Location Samples 0.3s 241

OpenCamera 1.5 3038

Telegram 15s 4193

WordPress 14s 1546

56

Chapter 7

Conclusion

Mobile application testing is of paramount importance. The overwhelming majority of

professional Android application developers rely heavily on manual testing for the developed

Android applications. The need for an automated testing solution approach has never been higher.

In this research, we propose a model-based automated testing approach for testing Android

applications automatically. We propose a model that focuses on the Android activity lifecycle

callback methods. This model is then implemented into a proof-of-concept Java application tool

that consumes a full Android application and generates a model of each activity, fragment and

AppCompatActivity file in the form of a graph data structure. This graph contains the lifecycle

methods and resources acquired and released as nodes, and the transitions between these lifecycle

methods as edges. Then this graph is used for checking the acquisition/release of three Android

system resources which are the camera, the location and the external drive (for read and write

operations). This model simple has three outputs:

1. Text files that contain the lifecycle methods, their acquired and released resources

and transitions between these lifecycle methods which mimic a graph data structure.

2. Application GUI status report which includes each resource (being one of the 3

tested resources), its parent activity, fragment or AppCompatActivity file name, and

the status of that resource (pass/fail).

3. Inject TODO comment recommendations inside the Android applications source

code to help the developer locate the resources that failed (acquired but not

released), and in which lifecycle methods to release them.

57

In the end, we conduct an experiment on 10 open source Android applications. The results

of this experiment seem promising and have good results. On average, for 8 out of the 10

applications we tested in this experiment, it only takes our tool around 780 milliseconds to parse

and analyze the application and produce results. This indicates reasonable and good execution

performance. Finally, we conduct a user acceptance test with 6 Android developer participants.

The results of this test indicate that the automated testing application we propose is useful.

7.1 Threats to Validity

Even though we did our best to try and reduce threats to validity for both evaluation

methods, we introduce the following threats to Validity.

7.1.1 User Evaluation Experiment

Regarding internal validity, our experiment’s 6 participants were all software developers

from the same software development company (Harri LLC). The affiliation between these

developers may have influenced and biased their responses. Besides, some of the participants

knew the researcher in person, so this might have affected their responses to the post experiment

survey. When designing this user evaluation experiment, we had the novice mobile developers in

mind as the target for this research. Even though the majority of our participants had less than one

year of experience (more 66.7%), some had around 5 years of experience. This could have resulted

in bias towards the questionnaire. That being said, novice developers can definitely benefit from

this automated testing application.

When it comes to external threats to validity, we suspect some factors may have caused this

type of threat. The user evaluation experiment involved 6 participants, even though this number

58

was sufficient for our purpose of measuring user acceptance, it may not be suitable for statistical

analysis purposes. Evaluating our automated testing application with a wider range of participants

and on a variety of mobile applications would provide us with more confidence in our tool.

Besides, providing more applications for the users to test with and from different domains would

help us expose gaps in our model and improve on it.

We also question our construct validity. The experiment asked the developers to modify the

existing code to make sure the non released resources are released and in the right lifecycle

methods. However, the experiment did not ask the developers to extend the features of the

application to mimic actual software development scenarios, and to test acquired and released

resources for a resource the developer himself/herserself implemented. Thus, not all steps of

applications development and testing were evaluated by our experiment. Future work on our

model-based testing application may include extending the sample application features and

acquiring and releasing system resources, to make sure every part of the process is captured and

evaluated.

7.1.1 Open Source Applications Evaluation

Our automated testing application was tested on 10 real world open source applications

from multiple domains such as multimedia, communication and navigation. However, in order for

us to have more confidence in the testing results, we need to test our automated testing application

on more open source applications. Future work on this automated testing application may also

cover applications from other platforms such as iOS applications.

59

7.2 Future Work

Our automated testing application involves checking for acquired and non released

resources. Then we insert comments in the source code to recommend how and where to release

the failed resources. Future work may include enhancing our suggested model to automated

generated and insert the code to release the failed resources automatically. This is actually a

feature that several developers in the survey had asked for. Besides, future work may include

generalizing this model to cover mobile applications on other platforms such as iOS applications.

Future work may also cover integrating resource checks for the rest of the Android system

resources. These resources include sensors, bluetooth, cellular data,...etc. Having all these

resources integrated into the model and having sets of rules for each of these would definitely help

generalize our automated testing application.

60

References

[1] H. Muccini, A. Di Francesco, and P. Esposito, “Software testing of mobile applications:

Challenges and future research directions,” in 2012 7th International Workshop on Automation of

Software Test (AST), Zurich, Switzerland, 2012, pp. 29–35.

[2] É. Payet and F. Spoto, “Static analysis of Android programs,” Information and Software

Technology, vol. 54, no. 11, pp. 1192–1201, Nov. 2012.

[3] D. Franke, S. Kowalewski, C. Weise, and N. Prakobkosol, “Testing Conformance of Life

Cycle Dependent Properties of Mobile Applications,” in 2012 IEEE Fifth International

Conference on Software Testing, Verification and Validation, Montreal, QC, Canada, 2012, pp.

241–250.

[4] S. Zein, N. Salleh, and J. Grundy, “Mobile Application Testing in Industrial Contexts: An

Exploratory Multiple Case-Study,” in Intelligent Software Methodologies, Tools and Techniques,

vol. 532, H. Fujita and G. Guizzi, Eds. Cham: Springer International Publishing, 2015, pp. 30–41.

[5] F. Nayebi, J.-M. Desharnais, and A. Abran, “The state of the art of mobile application

usability evaluation,” in 2012 25th IEEE Canadian Conference on Electrical and Computer

Engineering (CCECE), Montreal, QC, 2012, pp. 1–4.

[6] R. Harrison, D. Flood, and D. Duce, “Usability of mobile applications: literature review and

rationale for a new usability model,” Journal of Interaction Science, vol. 1, no. 1, p. 1, 2013.

[7] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, and A. M. Memon, “Using

GUI ripping for automated testing of Android applications,” in Proceedings of the 27th IEEE/ACM

International Conference on Automated Software Engineering - ASE 2012, Essen, Germany, 2012,

p. 258.

61

[8] H. Kim, B. Choi, and W. E. Wong, “Performance Testing of Mobile Applications at the Unit

Test Level,” in 2009 Third IEEE International Conference on Secure Software Integration and

Reliability Improvement, Shanghai, China, 2009, pp. 171–180.

[9] IDC: The premier global market intelligence company. (2020). IDC - Smartphone Market

Share - OS. [online] Available at: https://www.idc.com/promo/smartphone-market-share/os

[Accessed 18 Jan. 2020].

[10] D. Franke, S. Kowalewski, C. Weise, and N. Prakobkosol, “Testing Conformance of Life

Cycle Dependent Properties of Mobile Applications,” in 2012 IEEE Fifth International

Conference on Software Testing, Verification and Validation, Montreal, QC, Canada, 2012, pp.

241–250, doi: 10.1109/ICST.2012.104.

[11] Android Developers. (2020). Understand the Activity Lifecycle | Android Developers.

[online] Available at: https://developer.android.com/guide/components/activities/activity-lifecycle

[Accessed 15 Jan. 2020].

[12] "Unit Testing - Software Testing Fundamentals", Software Testing Fundamentals, 2020.

[Online]. Available: http://softwaretestingfundamentals.com/unit-testing/. [Accessed: 15- Jan-

2020].

[13] M. Linares-Vasquez, K. Moran, and D. Poshyvanyk, “Continuous, Evolutionary and

Large-Scale: A New Perspective for Automated Mobile App Testing,” 2017, pp. 399–410, doi:

10.1109/ICSME.2017.27.

[14] D. Bernardo Silva, A. T. Endo, M. M. Eler and V. H. S. Durelli, "An analysis of automated

tests for mobile Android applications," 2016 XLII Latin American Computing Conference (CLEI),

Valparaiso, 2016, pp. 1-9.

https://doi.org/10.1109/ICST.2012.104
https://doi.org/10.1109/ICST.2012.104

62

[15] S. R. Choudhary, A. Gorla, and A. Orso, “Automated Test Input Generation for Android: Are

We There Yet? (E),” in 2015 30th IEEE/ACM International Conference on Automated Software

Engineering (ASE), Lincoln, NE, USA, 2015, pp. 429–440, doi: 10.1109/ASE.2015.89.

[16] “The Monkey UI android testing tool,” http://developer.android.com/ tools/help/monkey.html.

[17] A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: An Input Generation System for Android

Apps,” in Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering, ser.

ESEC/FSE 2013. New York, NY, USA: ACM, 2013, pp. 224–234. [Online]. Available:

http://doi.acm.org/10.1145/2491411.2491450

[18] S. Anand, M. Naik, M. J. Harrold, and H. Yang, “Automated Concolic Testing of

Smartphone Apps,” in Proceedings of the ACM SIGSOFT 20th International Symposium on the

Foundations of Software Engineering, ser. FSE ’12. New York, NY, USA: ACM, 2012, pp.

59:1–59:11. [Online]. Available: http://doi.acm.org/10.1145/2393596.239366617 \

[19] T. Azim and I. Neamtiu, “Targeted and Depth-first Exploration for Systematic Testing of

Android Apps,” in Proceedings of the 2013 ACM SIGPLAN International Conference on Object

Oriented Programming Systems Languages & Applications, ser. OOPSLA ’13. New York, NY,

USA: ACM, 2013, pp. 641–660. [Online]. Available:

http://doi.acm.org/10.1145/2509136.2509549

[20] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine and G. Imparato, "A toolset for

GUI testing of Android applications," 2012 28th IEEE International Conference on Software

Maintenance (ICSM), Trento, 2012, pp. 650-653, doi: 10.1109/ICSM.2012.6405345

[21] G. de Cleva Farto and A. T. Endo, “Evaluating the Model-Based Testing Approach in the

Context of Mobile Applications,” Electronic Notes in Theoretical Computer Science, vol. 314, pp.

3–21, Jun. 2015.

https://doi.org/10.1109/ASE.2015.89

63

[22] Robotium, Robotium - the world’s leading Android test automation framework. [Online;

accessed 2014]. [Online]. Available: https://code.google.com/p/robotium

[23] N. H. Saad and N. S. Awang Abu Bakar, "Automated testing tools for mobile applications,"

The 5th International Conference on Information and Communication Technology for The Muslim

World (ICT4M), Kuching, 2014, pp. 1-5.

[24] K. Frajtak, M. Bures, and I. Jelinek, “Exploratory testing supported by automated

reengineering of model of the system under test,” Cluster Computing, vol. 20, no. 1, pp. 855–865,

Mar. 2017.

[25] S. Subramanian, T. Singleton, and O. El Ariss, “Class coverage GUI testing for Android

applications,” in 2016 International Conference on System Reliability and Science (ICSRS), 2016,

pp. 84–89.

[26] D. Amalfitano, A. R. Fasolino, P. Tramontana, B. D. Ta, and A. M. Memon, “MobiGUITAR:

Automated Model-Based Testing of Mobile Apps,” IEEE Software, vol. 32, no. 5, pp. 53–59, Sep.

2015.

[27] A. R. Espada, M. del M. Gallardo, A. Salmerón, and P. Merino, “Using Model Checking to

Generate Test Cases for Android Applications,” Electronic Proceedings in Theoretical Computer

Science, vol. 180, pp. 7–21, Apr. 2015.

[28] I.-A. Salihu, R. Ibrahim, B. S. Ahmed, K. Z. Zamli, and A. Usman, “AMOGA: A

Static-Dynamic Model Generation Strategy for Mobile Apps Testing,” IEEE Access, vol. 7, pp.

17158–17173, 2019.

[29] P. Liu, X. Zhang, M. Pistoia, Y. Zheng, M. Marques, and L. Zeng, “Automatic Text Input

Generation for Mobile Testing,” in 2017 IEEE/ACM 39th International Conference on Software

Engineering (ICSE), Buenos Aires, 2017, pp. 643–653.

64

[30] V. Gudmundsson, M. Lindvall, L. Aceto, J. Bergthorsson, and D. Ganesan, “Model-based

Testing of Mobile Systems – An Empirical Study on QuizUp Android App,” Electronic

Proceedings in Theoretical Computer Science, vol. 208, pp. 16–30, May 2016.

[31] L. Panizo, A. Díaz, and B. García, “Model-based testing of apps in real network scenarios,”

International Journal on Software Tools for Technology Transfer, Apr. 2019.

[32] K. Frajták, M. Bures, and I. Jelinek, “Model-Based Testing and Exploratory Testing: Is

Synergy Possible?,” in 2016 6th International Conference on IT Convergence and Security

(ICITCS), 2016, pp. 1–6.

[33] H. Zhang, H. Wu, and A. Rountev, “Automated test generation for detection of leaks in

Android applications,” in Proceedings of the 11th International Workshop on Automation of

Software Test - AST ’16, Austin, Texas, 2016, pp. 64–70.

[34] Y.-M. Baek and D.-H. Bae, “Automated model-based Android GUI testing using multi-level

GUI comparison criteria,” in Proceedings of the 31st IEEE/ACM International Conference on

Automated Software Engineering - ASE 2016, Singapore, Singapore, 2016, pp. 238–249, doi:

10.1145/2970276.2970313.

[35] D. Amalfitano, N. Amatucci, A. R. Fasolino, and P. Tramontana, “A Conceptual Framework

for the Comparison of Fully Automated GUI Testing Techniques,” in 2015 30th IEEE/ACM

International Conference on Automated Software Engineering Workshop (ASEW), Lincoln, NE,

2015, pp. 50–57.

[36] S. Barnett, I. Avazpour, R. Vasa, and J. Grundy, “Supporting multi-view development for

mobile applications,” Journal of Computer Languages, vol. 51, pp. 88–96, Apr. 2019, doi:

10.1016/j.cola.2019.02.001.

[37] https://javaparser.org/

https://doi.org/10.1145/2970276.2970313
https://doi.org/10.1145/2970276.2970313
https://javaparser.org/

65

[38] N. Smith, “JavaParser: Visited,” p. 7.

[39] S. Zein, N. Salleh, and J. Grundy, “Static analysis of android apps for lifecycle conformance,”

in 2017 8th International Conference on Information Technology (ICIT), Amman, Jordan, May

2017, pp. 102–109, doi: 10.1109/ICITECH.2017.8079982.

[40] Payet, É. and F. Spoto, Static analysis of Android programs. [20] Information and Software

Technology, 2012. 54(11): p. 1192-

 1201.

https://doi.org/10.1109/ICITECH.2017.8079982
https://doi.org/10.1109/ICITECH.2017.8079982

66

Appendix A: Survey Questions

Pre-experiment survey

1. How many years of experience do you have in Android app development?

● 1 or less

● 1 - 3 years

● 3 - 5 years

● 5 - 7 years

● More than 7

2. Gender?

● Male

● Female

3. How many Android apps have you built/helped build?

● 1 - 5

● 6 - 10

● more than 10

4. Have you used automated Android app testing tools before?

● yes

● no

5. What level of education do you have?

● High School

● Diploma

● Bachelor's Degree

● Master's Degree

● PhD

67

Post Experiment Survey

Answers to questions 1 through 15 have the following likert scale for answer

Questions 16 and 17 are open-ended questions

1. It was fairly easy to use the automated testing application

2. It was easy to learn how to use the automated testing application

3. It was easy to find the log files for each activity

4. It was easy to find the @TODO comments in the activity files for failing resources

5. It was easy to find the resources that were caught but not released in any activity lifecycle

method

6. The results screen in the automated testing application GUI provided useful information about

the Android app resources

7. The information in the automated testing application GUI helped me identify resources that are

caught but not released

8. It was easy to release the non released (failed) resources and run the automated testing

application again to verify if resource is released (passed)

9. It was easy to remember how to use the automated testing application again after releasing the

resources in the Android app

10. It was easy to avoid making errors or mistakes while using the automated testing application

11. The automated testing application makes it easy to detect resources caught but not released

68

12. The automated testing application makes the Android app development and testing go faster

13. The automated testing application makes it more productive to develop and test Android apps

14. You are satisfied with using the automated testing application

15. You would recommend using this automated testing application to a fellow Android developer

16. What did you like the most about the automated testing application?

17. What features would you like to be added to the automated testing application?

